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Scaling and the quantum Hall effect 
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Received 11 July 1989 

Abstract. The description of the quantum Hall effect in terms of a two-parameter scaling 
theory is considered by studying the results of numerical simulations. It is argued that the 
apparently contradictory results can be explained in terms of a modification of the flow 
diagram predicted by Pruisken and co-workers. This modification is shown to be consistent 
with the generalised flow diagram for the fractional effect. 

1. Introduction 

The scaling description of the localisation of electrons in disordered systems (Abrahams 
et  a1 1979), which has been so successful in describing the transport properties of quasi 
two-dimensional systems in the absence of a magnetic field, remains controversial when 
it is applied to the quantum Hall effect (von Klitzing et  a1 1980). 

The usual approach is that due to Pruisken et a1 (see Pruisken 1987) in which a 
gxX - gxY renormalisation group flow diagram is derived from a non-linear (T model by 
including an extra, topological 0 term, related to cxY. The Pruisken flow diagram is 
periodic in cxY and contains a single fixed point for each Landau level located at half 
integer oxy and at oxx of order unity (in units of e 2 / h ) .  This saddle point directs the 
flow towards oxy = integer and oxX = 0; except at half integer bxY, where the flow is 
towards the fixed point. This diagram seems to be confirmed by experimental results 
deriving a temperature driven flow diagram (Wei et  a1 1985, Kawaji and Wakabayashi 
1987). 

On the other hand, numerous numerical results, especially those by Ando and Aoki 
(Aoki 1987), but also by Chalker and Coddington (1988) and by the present author 
(Schweitzer et a1 1984) are difficult to reconcile with the Pruisken theory. Perhaps 
surprisingly, although these numerical approaches have very different starting points, 
they agree quantitatively with one another. This suggests that the behaviour they 
predict is model independent. Aoki claims that the numerical results are inconsistent 
with the two-parameter scaling theory. It is not clear to me whether he is referring to 
two-parameter scaling theories per se, or to the Pruisken theory in particular. Indeed, 
Aoki and Ando (Aoki 1987) have calculated their own crxx - cXY flow diagram, which 
contains no crossing flow lines, and is therefore consistent with the basic principle of 
two-parameter scaling. 

More recently Clark et a1 (1987) have measured a temperature driven flow diagram 
for the fractional effect that seems to be consistent with a very speculative theoretical 
diagram published some years ago (Laughlin et a1 1985). In this diagram the frac- 
tionally charged quasiparticles (Laughlin 1983, Halperin 1984, Haldane 1983) behave 
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as the electrons do in the integer effect, but with the c,, - oxy flow diagram rescaled 
to reflect the fractional charges. In order to derive a consistent diagram Laughlin 
et al (1985) were forced to include an extra unstable fixed point between two stable 
fixed points on each half integer (or equivalent) line. There was no other physical 
justification for the inclusion of this feature. 

These very different approaches are represented in terms of flow diagrams. The 
length scale with respect to which the flow is measured may be the physical size of 
the system or the width of a strip, in numerical work. In the field theory, however, it 
appears as the lower limit of an integral over reciprocal space, whereas for comparison 
with experiment one must think in terms of the inelastic scattering length. In addition, 
different methods may involve different averaging procedures or even calculations 
of different but related quantities. Hence one should not expect to be able to plot 
the results of these different approaches on top of one another. However, the main 
topological features of the flow, such as fixed points and attractors, should not depend 
on these details. Quantities associated with these topological features, such as critical 
exponents, should also be universal. 

In this paper I shall present some numerical results and shall attempt to analyse 
them in terms of a two-parameter scaling theory. I shall show that the results are 
consistent with a flow diagram containing two fixed points rather than one on each 
half integer line. Hence the extra fixed point in the generalised diagram can be 
attributed to the behaviour of non-interacting electrons in a magnetic field rather than 
to the effects of the interactions. 

2. Numerical calculations 

The calculations were carried out using a tight-binding model with the magnetic field 
represented by Peierls factors (Harper 1955), thus 

mn mnm’n’ 

where 

1 m = m’ and n = n’ k 1 
Vmnmln, exp(+i2nn/LB) m = m’ f 1 and n = n’ (2)  

{(I otherwise. 

The (m, n)  represents points on a square lattice and E is a random number chosen from 
a rectangular distribution of width W (-+ W < E I W ) .  

Using the transfer matrix method (MacKinnon and Kramer 1983) the smallest 
Lyapunov exponent, c( = l/IwM, was calculated for long strips with periodic boundary 
conditions and width M ,  where 4 I M I 64. This exponent can be interpreted as the 
inverse localisation length of states on an infinitely long strip. Only a small sample of 
the results are presented here, with L, = 8 and W = 0.5. The energies are chosen to 
scan the lowest Landau level, which is located at about E = -3.29 in the absence of 
disorder. 

Experience from the simpler localisation problem without a magnetic field (MacK- 
innon and Kramer 1983) has shown that the appropriate quantity to study is the 
renormalised localisation length A = I., / M ,  which displays one-parameter scaling 
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behaviour. In other words, the changes in A with increasing M can be expressed as 
a function of A alone. The results are summarised in figure 1, where A is plotted 
against 6 E  / 6 E l  M in the form of a flow diagram for increasing M .  Here 6 E  is the 
deviation of the energy from the apparent centre of the Landau level (E, = -3.292 
when W = 0.5). The points for different M corresponding to a single energy are joined 
by a cubic spline curve and the individual points are represented by arrowheads in 
the direction of the local flow (ie the gradient required to calculate the spline). The 
arguments leading to this unconventional way of representing the data are discussed in 
the next section. Here it suffices to note that the flow lines rarely cross. Those crossings 
which are present are at small system sizes and can be accounted for by the statistical 
errors in the data (relative error 1%). 

I I I I 

6E2M 

Figure 1. Renormalised localisation length A against 6 E  16EIM, where 6 E  is the deviation 
of the energy from the centre of the lowest Landau level (Eo = -3.292) and M is the 
width of the strip. The disorder is W = 0.5 and magnetic field given by LB = 8. The 
energy changes in steps of 0.01 on either side of the central (almost vertical) line at 
E = -3.29. The data points are represented by arrows in the direction of increasing system 
size ( M  = 4,8,16,32,64) as calculated from a cubic spline fit to the data for a single energy 
(continuous lines). The crossed arrows are guides to the eye marking the two fixed points. 

Figure 1 has all the characteristics of a renormalisation group flow diagram. Indeed, 
it looks rather similar to the ox, - oxy diagram of Aoki and Ando (Aoki 1987) There 
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is clearly an unstable fixed point at about A z 0.75 and possibly a saddle point at the 
top of the diagram. The diagram is consistent with two-parameter scaling but not with 
the Pruisken theory. 

3. Data Analysis 

Let SA and 6E be the deviations from the fixed point in the direction of A and in the 
direction of the unknown second parameter, E, respectively. Since the data in figure 1 
are symmetric around 6 E = 0, the general equation for the flow around the fixed point 
reduces to 

= a S A  + y 6~~ + 6z2 d6A 
d l n M  
d 6 E  

d l n M  
= p 6Z -I- 6 6 A S  E. 

The unknown quantity 6E can be eliminated to give a second-order differential 
equation which can then be linearised in 612 to give 

+ 2 a p 6 A = O  
d2 SA d6A 

d In M 2  -l 2P)dlnM _ _ _ _  (4) 

which has the general solution 

6~ =  AM^ + B M ~ ~ .  ( 5 )  

Since A must be an analytical and symmetric function of 6 E  for all finite M ,  its 
behaviour near the fixed point can be described by 

A = A' + (a + b6E2)M' + (c + d 6 E 2 ) M 2 p .  ( 6 )  

This general form can be fitted to the raw numerical data to find the seven unknowns. 
There is more than enough data for this to be a valid procedure. We can distinguish 
between the otherwise indistinguishable terms in (6) by considering the behaviour at 
6 E  = 0. Here the c( term must dominate, since 6E = 0 in (3). Thus we expect to find 
c = 0. 

In practice 2p = 1.0 f 0.05, c z 0.01d when the units of 6 E  are chosen such that 
S E  is typically of order unity. Since the p term in (6) can also be written in terms of 
M / ( ,  where 5 is the localisation length, 2p = 1 implies 5 - 1 / 6 E 2  in agreement with 
other results (Aoki 1987, Chalker and Coddington 1988). The other parameters have 
rather large error bars, and the fitted values are rather sensitive to the details of the 
fitting procedure, in particular a, which seems to be very small. This may reflect the 
presence of another fixed point just above the range of the present data or the presence 
of a so-called irrelevant variable whose effect has not yet died out at the system sizes 
studied. 

The above analysis provides the justification for plotting A against 6 E 16 E I M in 
figure 1 in order to obtain a two-dimensional flow diagram to describe the behaviour 
of A. 
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4. Conclusions 

So far the discussion has been in terms of the renormalised localisation length A and 
the unknown second scaling variable E. There is no simple mapping between these 
and oxx - oxy and it is unclear whether such a mapping should even exist in principle, 
as it is impossible to represent uxy in terms of states at the Fermi energy alone in the 
presence of periodic boundary conditions. Nevertheless, the behaviour of oxx can be 
represented in terms of Fermi energy quantities and it may be assumed that the flow 
diagram for oxx - ox) will be broadly similar to that for A - E. In particular, the 
unstable fixed point and probably a saddle point should be important features of both. 
However, it may not be valid to draw any inference about the behaviour of oxy from 
that of E. 

The Pruisken theory involves an expansion in l/cXx that may break down at small 
values of oxx. The presence of an unstable fixed point at smaller oxx than Pruisken’s 
saddle point is thus not necessarily inconsistent with his results. In fact, as mentioned in 
the introduction, such a fixed point is a necessary part of the generalisation of Pruisken’s 
flow diagram to the fractional quantum Hall effect. The results presented here together 
with those of Aoki and Ando (Aoki 1987) and of Chalker and Coddington (1988) are 
consistent with such a picture. 

A full understanding of the quantum Hall effect requires an understanding of the 
role of both disorder and interactions. I have shown that the behaviour of non- 
interacting electrons in a magnetic field is described by a pair of fixed points, in 
the renormalisation group description. If this unit is repeated on a different scale to 
describe also the behaviour of the fractionally charged quasiparticles in the presence 
of disorder, the same diagram results as in the prediction of Laughlin et a1 (1985). The 
main difference is in the interpretation. In the picture of Laughlin er a1 the unstable 
fixed point is related to the many-body effects that lead to the fractional states. In the 
present picture the unstable fixed point is a single particle effect, related to the integer 
quantum Hall effect. 
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